Plus d'info sur IFP Energies nouvelles - Sciences et Technologies du Numérique
Stage Data / Mathématiques Appliquées Hauts-de-Seine entre février et avril 2025 5 mois
IFP Energies nouvelles (IFPEN) est un acteur majeur de la recherche et de la formation dans les domaines de l’énergie, du transport et de l’environnement. Depuis les concepts scientifiques en recherche fondamentale jusqu’aux solutions technologiques en recherche appliquée, l’innovation est au cœur de son action, articulée autour de quatre orientations stratégiques : climat, environnement et économie circulaire ; énergies renouvelables ; mobilité durable ; hydrocarbures responsables.
Dans le cadre de la mission d’intérêt général confiée par les pouvoirs publics, IFPEN concentre ses efforts sur l’apport de solutions aux défis sociétaux et industriels de l’énergie et du climat, au service de la transition écologique. Partie intégrante d’IFPEN, IFP School, son école d’ingénieurs, prépare les générations futures à relever ces défis.
La surveillance de la fatigue structurelle des éoliennes s’appuie de plus en plus sur l’exploitation d’un jumeau numérique représentatif du comportement de la machine physique. Les efforts mécaniques au niveau de différents points de la tour ou des pales de la machine induisent des déformations qui dépendent des conditions de vent et de l’orientation des pales ou du rotor face au vent, des états de mer pour les éoliennes offshore et du sillage induit par une machine située au vent dans le cas d’un parc regroupant plusieurs machines.
Le calcul de ces efforts grâce au jumeau numérique revient à disposer d’un capteur virtuel [1] qui facilite et accélère l’analyse de la fatigue et de la durée de vie restante de la machine. Les modèles implémentés au niveau du jumeau numérique sont calés sur des données simulées (données scalaires et sous forme de série temporelles, données dites « synthétiques ») afin que la surveillance puisse démarrer dès la mise en service de la machine.
Toutefois lorsque des données expérimentales (dites « réelles ») sont progressivement disponibles, à partir de différents capteurs physiques (anémomètre, girouette, centrale inertielle, jauge de contraintes, …) qui équipent certaines machines, on peut observer des écarts (dans le domaine couvert, la distribution ou la forme) avec les données synthétiques qui mettent en évidence un problème de manque de généralisation du jumeau numérique qui limite la performance des résultats en prédiction.
Objectifs
L’enjeu principal du stage consiste à identifier la source du problème de manque de généralisation du modèle d’efforts.
Sachant que ce modèle offre de très bonnes capacités en inférence si on l’entraine exclusivement sur les données synthétiques ou exclusivement sur les données réelles, nous pensons que son architecture est capable d’extraire l’information utile dans les signaux d’entrée.
Une publication récente [2] caractérise la problématique de généralisation sur données hors distribution sous forme d’un panorama. Par ailleurs un outil comme ADAPT [3] propose différentes approches pour composer avec les sources d’écarts et rendre le modèle plus robuste à l’origine des données.
L’étudiant.e aura accès aux bases de données synthétiques et réelles d’une éolienne terrestre ainsi qu’au modèle numérique entrainé basé sur un réseau de neurones hybride traitant en entrée d’un côté des données scalaires et, de l’autre, des données de type séries, via des couches convolutives.
Références
[1] Dimitrov N. et al, “Virtual sensors for wind turbines with machine learning-based time series models”, 2022, https://doi.org/10.1002/we.2762
[2] Liu J. et al, “Towards Out-Of-Distribution Generalization : A Survey”, 2021 & 2023, https://arxiv.org/abs/2108.13624
[3] Michelin and Centre Borelli, ENS Paris-Saclay, “ADAPT Awesome Domain Adaptation Python Toolbox”, https://adapt-python.github.io/adapt/
Mots-clés / Keywords
Eolienne (parc d’), Jumeau numérique, Capteur virtuel, Apprentissage profond, Réseau de neurones convolutif, Généralisation sur données hors distribution, Série temporelle, Prédiction / Wind Turbine Farm, Digital Twin, Virtual Sensor, Deep Learning, Convolutional Neural Network, Out-Of-Distribution Generalization, Timeseries, Inference
Elève bac+5 pour stage de fin d’études en Master 2 ou école d’ingénieur 3e année
Responsables :
Frédéric NICOLAS / Département Modélisation Numérique des Systèmes Energétiques
Jean-François LECOMTE / Département Informatique Scientifique
Lieu : IFPEN – Rueil-Malmaison
Le site est accessible en transport en commun (remboursement de 65% du coût de l’abonnement). Les déplacements réguliers en vélo ou VAE pour le trajet domicile-travail peuvent être indemnisés.
Stage rémunéré
IFP Energies nouvelles - Sciences et Technologies du Numérique
Frederic NICOLAS