Plus d'info sur IFP Energies nouvelles - Mobilité et Systèmes
Stage Electricité / Electrotechnique Hauts-de-Seine entre février et juillet 2025 6 mois
IFP Energies nouvelles (IFPEN) est un acteur majeur de la recherche et de la formation dans les domaines de l’énergie, du transport et de l’environnement. De la recherche à l’industrie, l’innovation technologique est au cœur de son action, articulée autour de quatre priorités stratégiques : CLIMAT, ENVIRONNEMENT ET ÉCONOMIE CIRCULAIRE, ÉNERGIES RENOUVELABLES, MOBILITÉ DURABLE et HYDROCARBURES RESPONSABLES.
L’engagement d’IFPEN en faveur d’un mix énergétique durable se traduit par des actions visant :
tout en répondant à la demande mondiale en mobilité, en énergie et en produits pour la chimie.
Dans cet objectif, IFPEN développe des solutions permettant, d’une part, d’utiliser des sources d’énergie alternatives et, d’autre part, d’améliorer les technologies existantes liées à l’exploitation des énergies fossiles.
Today, electric machines are found in the vast majority of soft mobility vehicles (scooters, bicycles) and land vehicles (electric and hybrid). Bearings are among the most fragile components of these rotating machines due to the high mechanical, thermal and electrical stresses that gradually lead to fatigue degradation and occasional failures. The advent of power electronics systems based on WBG components (such as SiC or GaN) further exacerbates this problem. According to the scientific literature, bearing failures are the main cause of rotating machine failures and motor failures in electric vehicles.
Currently, existing work on this type of fault can prevent the destruction of the machine but cannot optimize the management of maintenance schedules. A difficulty in detecting this type of fault lies in the access to information and the sensitivity of the signals used for detection.
In this context, the proposed internship will focus on methods to detect bearing faults before they reach an advanced state leading to failure. The goal is to develop a reliable identification method that can be part of a predictive maintenance strategy to avoid false alarms. In other words, the goal is to anticipate the occurrence of a machine failure before it has consequences that could disrupt its operation.
Engineering schools or equivalent in electrical engineering with strong knowledge of electromagnetics, electrical machine modeling and automation/signal processing.
Keywords: Electrical machines, fault detection, preventive maintenance, bearing faults.
Duration and period of internship: 6 months from February 2025